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Introduction  
This task asks us to investigate a very interesting phenomenon, which was first 
observed over a century ago1: if a wire with weights attached to each end is placed 
across a block of ice, this wire may pass through the ice without cutting it. 
In our work, most experiments were held in the room with air temperature 23 °C 
(unless otherwise mentioned); for producing ice blocks we had used usual ice cube 
tray, which was filled with usual water and placed in the refrigerator at temperature of 
-11.5 °C for at least 12 hours. 
It should be noted, that ice blocks, produced such way, have a non-transparent 
region in their central part. It happens due to the presence of air and other gases, 
dissolved in water. These gases can’t freeze together with water, and when it 
crystallizes they just leave it. However, when a vessel with water is put in a 
refrigerator, first the outer parts of water will turn into solid state, and gasses in the 
still liquid water in the inner part will be captured inside. And when this water finally 
crystallizes, gases form small bubbles, which make ice non-transparent2,3. Certainly, 
they also change mechanical and thermodynamic properties of the ice, and it’s 
difficult to predict how exactly. Fortunately, the non-transparent region wasn’t very 
big, so it was possible to make a cut through ice without entering it; so, in our 
experiments we were placing wire 
so that it would go only through 
the transparent region. 
Experimental setup 
Scheme of our experimental setup 
is presented in fig. 1. A block of 
ice is placed onto a piece of wood, 
which is mounted in two supports. 
Wood is used because due to less 
efficient heat exchange it reduces 
melting (compared to the ice, 
mounted directly into metal supports). There is a slit made in the wooden block, so 
that wire could continue moving down after exiting ice cube. In all our calculations we 
have assumed, that wire inside the ice isn’t curved. To achieve it in experiment the 
wire is mounted in a fretsaw, instead of its blade. Load is attached to the fretsaw. 
Qualitative explanation  
Already first experiments had shown that effect, described in the problem, does take 
place: ice really remained in one part. But we also had noticed that even two 
originally separate blocks of ice tend to become one. If environment temperature is 
positive, there is a thin layer of melted water on the ice; and when two ice cubes are 
put in contact, heat from this water is “sucked” by ice; thereby, water crystallizes, 
connecting two blocks together. However, after it had happened, there is no slit on 
the surface of the ice in the place, where cubes had connected. And if wire passes 
through the ice, it lefts a notable slit; it proves that these are two different 
phenomena. 

Figure 1. Experimental setup. 



But what have happened to the ice, which was in the place of the slit? Surely, it had 
melted. And, for some reason, it was melting faster than all other ice. This reason is 
additional pressure, applied by the wire. This effect is called “regelation”, and was 
first observed by Michael Faraday4. The matter is that volume of a portion of ice at 
the temperature 0 °C is bigger than volume of the s ame portion of water at the same 
temperature; therefore, if we apply pressure to the ice, we help it to decrease it’s 
volume, correspondingly, assisting in melting. For example, if ice is under pressure 
of 130 bar, it will melt at the temperature -1 °C. And in atmospheric pressure ice 
melts at 0 °C. Approximating, that between these tw o points dependence of melting 
temperature on applied pressure is linear, we can write: 

;
  129

1
)(

bar

C
PPT

°−⋅=  

where P is applied pressure, and T(P) is temperature at which ice will start melting. 
So, let’s describe what’s exactly happening in our experiment. When a wire is placed 
across an ice cube, pressure is applied to a small portion of ice, so it melts at 
negative temperature (it certainly requires some heat, but it comes from the 
surrounding air). Once it is turned into water, pressure pushes it upwards, around the 
wire. During this movement water heats up almost to 0 °C. But when water reaches 
top side of the wire, there is no more pressure; water now is super-cooled, therefore 
it instantly crystallizes, releasing heat. This heat is transferred down through the wire 
and is used to melt a new portion of ice2. And the cycle repeats. 
This theory is proven by the fact that wire leaves a turbid trace in the ice. It occurs 
exactly because of super-cooled liquid crystallization. Liquid starts to crystallize 
around different dirt particles; so a lot of crystals is growing at the same time. That is 
why not one solid crystal is formed, but a set of small ones. Borders between these 
crystals scatter light, making the whole structure less transparent than usual crystal 
of ice. 
Quantitative analysis  
Our theory states that all the ice involved in the cycle one time melts into water, and 
one time heats up. Thereby, total heat required is: 
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where c is ice’s heat capacity, λ is specific heat of fusion, T0 is original temperature 
of ice, and m is mass of ice under the wire, it can be calculated as m=ρhdl; where ρ 
is ice’s density, h is height of the ice block, d is wire’s diameter and l is length of the 
part of the wire which touches ice. Now, if we approximate our system as closed (no 
heat enters or leaves the system) than all this heat have to pass through the wire. 
Heat flux through the wire is: 
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where K is wire material’s heat conductivity, S is area of contact of wire with 
crystallizing water. Thereby, time, required for the wire to pass through the ice, is: 
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where M is total mass of the weights attached to the wire. 
Experimental analysis  
In the last formula time is proportional to the square of wire’s diameter and inversely 
proportional to the mass of load. We had checked correctness of these dependences 
for the nichrome (heat conductivity 12 W/(m*K)) wires (fig. 2). It can be seen, that 
dependence of the time of cutting on the load’s mass is correct; however, we can’t 



be so sure about dependence on wire’s diameter. The matter is that for precise 
measurements we had needed wires of different diameter, but 100% identical 
chemical composition; and we found only three such nichrome wires. In the fig. 2 this 
dependence is fitted by parabola, using the fact that it should go through (0; 0) point. 
It can be seen, that dependence is close to parabola; but due to the number of 
experimental points, we can’t state that dependence is proven. We can only say that 
for nichrome increase in wire’s diameter increases time, required for cutting; thus, at 
least qualitatively proving theory. 
But these dependences do not work for the copper (heat conductivity 382 W/(m*K)) 
wires at all. As shown in Table 1, not only cutting time now decreases with increase 
of wire’s diameter, but also there is almost no dependence on the load’s mass. 

 
Table 1. Cutting times for copper wires with differ ent parameters. 

Wire’s diameter, mm Load’s mass, kg Cutting time 
0.6 5 18 min 20 s 
1.35 5 8 min 50 s 
1.45 5 8 min 08 s 
1.45 1 9 min 20 s 
 
We had explained the failure of our theory for 
copper wires by its heat conductivity: 
copper’s heat conductivity is about 8 times 
higher than nichrome’s. For nichrome, we 
could ignore heat inflow from the environment 
through the wire; and for copper such inflow 
is significantly higher, and our approximation 
of system as closed doesn’t work anymore. 
This idea successfully describes what we see 
in Table 1: if we increase wire’s diameter we 
increase heat income from environment; if 
mass of load is changed, it affects 
temperature of water melting, which is, in this case, less important. 
Realization of the closed system for copper  

Figure 2. Left plot shows cutting time subject to loads mass for the nichrome wire (d=0.4 
mm), fitted by hyperbola; right is time of cutting for three nichrome wires with 6 kg weight 
attached, fitted by parabola.  

Figure 3 . Depende nce of the wire’s 
position on time passed. Temperature of 
surrounding air 0.5 °C.  



In order to prove correctness of these explanations experimentally, we had run an 
experiment, where all heat exchanges with surroundings were reduced to minimum. 
Whole setup had been moved outside (temperature of air was 0.5 °C); melting snow 
had been put around free ends of the copper wire. 
Results of the experiment can be seen in fig. 3. At first wire was moving very slow – 
the heat, required for melting of the first portion of ice, was being accumulated; the 
fact that it took so much time proves that heat inflow was very small. 
It is also interesting to note, that if temperature of surroundings is lower than melting 
temperature of ice under given pressure, then process won’t start. Since even with 
high load’s masses this melting temperature is only slightly smaller than zero, we 
hadn’t observed wire cutting the ice if air temperature was lower than 0 °C. 
While heat was being accumulated, ice under the wire was melting; finally, enough 
ice had melted, so that water had covered the upper side of the wire. Once it had 
crystallized, enough heat was released to melt another portion of ice; the cycle 
started; velocity of wire significantly increased. But after it, velocity remained 
constant until the end of experiment, proving that not only no heat enters the system, 
but also that losses of heat during cycle are negligible. 
Quantitative analysis of not-closed system 
First, it is required to take into account heat income. Since above the wire 
temperature is 0 °C and under it it’s T(P), we can approximate, that whole wire has 
temperature T(P)/2. By measuring temperature of the wire with thermocouple at 
various distances from the ice cube we had found, that distance y between the last 
point of wire, where temperature is equal to air one, and the first point where it is 
equal T(P)/2, is about 3 cm. Thereby heat flux through the one side of the wire: 
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where Tair is air temperature. Since wire has two ends, total income of heat from 
environment is 2*W2. 
Fig. 3 had shown that amount of heat, spread into ice is negligibly low; however, for 
full description of the not-closed system we had decided to take these losses into 
account too. We had frozen a block of ice with several thermocouples in it; then we 
let the wire cut the ice, while measuring temperature through all thermocouples. It 
had shown that on the distance of about 1 cm from the wire ice’s temperature hasn’t 
changed during experiment. Assuming that heat escapes from the wire, and from the 
zone above wire, heat flux into one side can be calculated as: 
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Total lack of heat will be 2*W3. 
Finally, we had also taken into account that specific heat of fusion also depends on 
the temperature, at which melting occurs: for water at 0 °C λ=330 kJ/kg, and at -7 °C 
it’s 317 kJ/kg. Once again, in this part the dependence can be approximated as 
linear; which means that dependence on the pressure is also linear: 
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So, now total heat, which is required for melting ice, equals: 
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and total heat flux, coming to the melting ice, is: 
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Combining all this we are now able to write a formula for finding time, required for 
cutting through the ice, if system can’t be approximated as closed: 
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Since it is hard to remember all these symbols, they are listed in the Table 2: 
Table 2. List of symbols, used in the formula for f inding time, required for cutting through the 
ice, if system can’t be approximated as closed. 

Symbol Meaning 
ρ Ice’s density 
h Height of ice block 
d Wire’s diameter 
l Length of wire’s part, which touches the ice 
c Ice’s heat capacity 
T0 Original temperature of ice 
λ(P) Ice’s specific heat of fusion (linearly depending on pressure, applied by the 

wire) 
K Wire material’s heat conductivity 
T(P) Ice’s melting temperature (linearly depending on pressure, applied by the wire) 
x Distance between the wire and point of ice block, where temperature does not 

change during experiment 
Kice Ice’s heat conductivity 
y Distance between the last point of wire, where temperature is equal to air one, 

and the first point where it equals T(P)/2 
Tair Air temperature 
 
Conclusions 
Because of the pressure ice under wire melts at negative temperature; in liquid form 
it goes upwards and freezes back under the wire, creating turbid region. Then cycle 
continues again and again. 
If temperature of surrounding air is close to 0 °C (but still positive), then this system 
can be described as closed; wire cut through the ice with constant speed, proving, 
that heat losses are negligibly small. 
For materials with low heat conductivity this system also can be approximated as 
closed; however, for materials with high heat conductivity it is necessary to take into 
account income of heat from the environment through the wire.  
To improve mathematical model further, it is possible to calculate heat losses and 
affect of melting temperature on the specific heat of fusion. 
It should be noted that wire must go through the transparent region of the ice block, 
because properties of the non-transparent region are significantly different. 
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