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4. Bending waves. 
Now let’s consider the bending waves arising in the rod when we hit it normally to 

its axis. Bending waves in the thin rod are expressed by the Eyler-Bernoulli beam 
theory equation of motion[1,2,4]: 

ࣔ૛࢟
૛࢚ࣔ ൌ െ ૛ࡷࡱ

࣋
൉ ࣔ૝࢟

 ૝  ,                                             (6)࢞ࣔ

where K is so-called “Gyration Radius” of the rod cross section: 
૛ࡷ ൌ ૚

ࡿ ׬  ,ࡿࢊ૛ࢠ
S – cross-section area of the rod, z – is the radial distance from the rod central axis, 
y  - is the displacement in the direction perpendicular to x (average symmetry center 
axis of the process), that describes the oscillations of the rod segments. For 
example, for the solid cylinder of radius a: 

૛ࡷ ൌ ૚
૛ࢇ࣊ ׬ ׬ ࢇ૛࢘

૙
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૛
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૝
. 

In (6) the shear deformations and rotary inertia are neglected. This is fourth order 
differential equation. Thus the velocity of transverse waves is dependent on the 
frequency. So a dispersion takes place.  

Solution of equation (6) has the following form[1,2]: 

,࢞ሺ࢟ ሻ࢚ ൌ ࢚ሺ࣓ܛܗ܋ ൅ ሻ࣐ ·  ሾ࡭ ሻ࢞࢑ሺܐܛܗ܋ ൅ ࡮ ሻ࢞࢑ሺܐܖܑܛ ൅ ࡯ ሻ࢞࢑ሺܛܗ܋ ൅ ࡰ  ሻሿ    (7)࢞࢑ሺܖܑܛ

where k=ω/v is the wave (propagation) number. As we mentioned above, wave 
velocity is dependent on frequency: 

࢜ ൌ ඥ૛(8)                                                   . ࡸࢉࡷࣇ࣊ 
This Eyler-Bernoulli beam theory gives the solution of bending waves in a thin beam 
or rod at low frequency. For the thick bars and for a high frequencies it does not 
work.  

Now let us consider the transverse vibration modes in thin bar. They depend on 
the “end conditions”. For our task we consider “both free ends” condition - no torque 
and no shearing force. They give the following restrictions on standing wave 
frequencies[1,2]:  
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and wave lengths: 
࢔ࣅ ൌ  ૝࢒
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where for n=1 we use 3.011 instead of 3. 
The frequencies and nodal points (for which x satisfies equation (7)=0 for all the 

time t) for the first modes are given in the table 1[1,2]: 
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