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 Some people can play on a handsaw. How 

do they get different pitches? Give a 

quantitative description of the phenomenon. 

Problem Nr. 2: 

Singing Saw 



How to play the singing saw: 

 The handle of the saw is 
clamped in a special 
holding facility on the 
bottom  

 The left knee touches the 
saw blade in order to 
stabilize the instrument. 

 



How to play the singing saw: 

 One uses a normal 
violin bow to play the saw 

 Through vibrating with 
the left hand one can also 
cause beautiful vibrato 

 With the help of a    
metallic holder the  
saw is bent in form 
of a s  



First experiments: 

Singing saws in general: 

You can create a sound with nearly all 

normal saws, but it is quite difficult and 

does not always sound very harmonic. 

The teeth of a saw are not significant as far 

as they are not crossed. In this case the 

sound would be damped. 



Our Singing saw 

For our further experiments 

we used a special musical saw 



Our Singing saw 

Data of the saw 

Length: 107.7 cm 

Largest blade width 17.7 cm 

Thickness 0.85 mm 

Sound spectra:  350 – 1500 Hz 

Material: tempered, cold rolled steel 



Experiments: 

1. Recording of tones and  Fourier 

Analysis: 

Experimental set-up: 



 Fourier Analysis: 

 The Fourier Analysis is a mathematical method which 
determines the different frequencies of the tone and their 
intensities and plots them in a diagram. 

Voltage in V: 

Frequency in Hz: 

Basic frequency 476 Hz 

Frequencies of 

the overtones 



2. Chladni Sound Figures: 

• We spread small pieces of iron on the saw 

blade and then played a tone 

- You can see the 

development of 

characteristic nodelines 

- We observed          

nodelines 

approximately 

rectangular shaped 



Evaluation of the Chladni Sound 

Figures: 

• Only a part of the saw oscillates 

• Boundary conditions: 

- In X- direction:  

 free edges, 2 nodelines 

- In Y- direction:  

 clamped edges 

•  The oscillation consists of 
transversal waves 



• We have standing transversal waves in our saw 
blade 

• But it was not possible to measure the speed of 
sound of them experimentally 

 

3. Determination of the speed of 

sound in the saw blade: 

From the formulas of transversal and  

longitudinal waves we know: 



ct

cl
.59



 We could measure the speed of 
sound of longitudinal waves: 

Experimental set-up: 

The saw lies on a      
piezoelectric crystal. 

With a metallic stick 
we give a compression 
pulse on the  long side 
of the saw blade.  



Analysis: 

The compression pulse is 
reflected at both ends of 
the saw blade: 

c = 2s/T 

c: Speed of sound 

s: Length of the saw blade 

T: Time between the maxima 

Voltage in V: 

Time in s: 



Speed of sound of longitudinal waves: 

• For a straight saw blade we measured an 

average speed of sound of cl = 5693 m/s 

• Speed of sound of tranversal waves: 

 ct = 0.59cl =  3353 m/s 

 This corresponds well to our calculated value 

      of ct which is:   
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E: Young‘s modul of elasticity 

: Density of steel 

: Poissons ratio (about 0,3) 



4. Determination of the vibrating 

part of the saw 

Experimentel set-up: 

The saw is clamped 
into a special holding 
device. 

This device allows us 
to make reproducible 
and exact measure- 
ments of the vibrating 
part of the saw blade. 



Measurement of the vibrating part of 

the saw 

Area in cm² 

Frequency in Hz 

• A loudspeaker stimulates the saw 
blade to oscillations 

• We touch the edge of the saw on 
different points 

 If we touch the vibrating part 
of the saw, the tone breaks off 

• The results of our measurement 
and a regression function ~ 1/A 
are ploted in the diagram 

Manual Method: 



• A loudspeaker stimulates the saw blade to oscillations  

• Then a Laser beam is pointed at different parts of the 

saw blade. 

• For the measurements one watches the reflection of 

the beam on a white wall. 

 If the laser is pointed on a vibrating part of the saw 

blade the reflection is out of focus.  

 If the laser is pointed on a resting part of the saw 

blade the reflection is sharp. 

Measurement of the vibrating part of 

the saw 

Laser - Method: 



Equation of motion for transversal 

waves in thin plates: 

Theory: 
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E: Young‘s modul of elasticity 
h: Thickness 
t: Time 
z: Elongation 



Formulation for harmonic 

solutions: 

z: Elongation of the oscillation 

( )z , ,x y t ( )Zo ,x y e
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Substitute z(x,y,t) with Zo(x,y) e jwt : 

(3) 



















  




















4

x
4

( )Z0 ,x y




















4

y
4

( )Z0 ,x y 2

















 


4

y
2

x
2

( )Z0 ,x y

12 w
2

( )Z0 ,x y

ct
2

h
2

0



With w = 2f we get for the frequency f: 

f .0459 k
2

ct h (5) 

We define the product:  
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The product k4 depends on the boundary conditions of 

the oscillation. 



We can write Zo(x,y) as a product 

of two functions: 

Zo(x,y) = X(x)*Y(y) 
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Wave equation: 

Boundary conditions: 

Free edges in x-direction: 

Kosine function 

Clamped edges in y-direction: 

Sinus function 
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For the wave number k we get 

from the differential equation: 
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With the boundary conditions we get: 



Our solution for the frequency 

is therefore: 

m,n:  Integers  

 For our basic oscillation  m,n =1  

h: Thickness 

Lx:  Length of the vibrating part 

Ly: Width of the vibrating part 
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Example: 

With the measured values: 

h = 0.85 mm   ct  = 3353 m/s 

Lx= 8.05 cm   Ly = 20.05 cm 

Measured value:  f = 813 Hz 

Calculated value:  f = 827 Hz 

Comparison of Experiment and Theory 



Comparison of Experiment and Theory 

• Calculated values of 
the frequencies, Lx 
und Ly are determined 
experimentally 

• Regression function as 
f ~ 1/A 

 • Red points: measured 

   values of the frequency   

   by Fourieranalysis 

 Good agreement 

Frequency in Hz 

Area in cm² 



The frequency depends on the of 

the vibrating part of the saw 

 The frequency depends on the size of the vibrating part  

 A = Lx*Ly of the saw if Lx/Ly is constant. 

 We determined Lx/Ly from our measurements: 

  = Lx/Ly = 0,336  0,042 
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Through transforming of the  formula of the 

frequency we get: 



Summary: 

The frequency depends on: 

 The bending of the saw blade which is 

significant for the size  of the vibrating 

part and the point one bows the saw 

 The material of the saw 

 The thickness of the saw 

  

 


