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 Some people can play on a handsaw. How 

do they get different pitches? Give a 

quantitative description of the phenomenon. 

Problem Nr. 2: 

Singing Saw 



How to play the singing saw: 

 The handle of the saw is 
clamped in a special 
holding facility on the 
bottom  

 The left knee touches the 
saw blade in order to 
stabilize the instrument. 

 



How to play the singing saw: 

 One uses a normal 
violin bow to play the saw 

 Through vibrating with 
the left hand one can also 
cause beautiful vibrato 

 With the help of a    
metallic holder the  
saw is bent in form 
of a s  



First experiments: 

Singing saws in general: 

You can create a sound with nearly all 

normal saws, but it is quite difficult and 

does not always sound very harmonic. 

The teeth of a saw are not significant as far 

as they are not crossed. In this case the 

sound would be damped. 



Our Singing saw 

For our further experiments 

we used a special musical saw 



Our Singing saw 

Data of the saw 

Length: 107.7 cm 

Largest blade width 17.7 cm 

Thickness 0.85 mm 

Sound spectra:  350 – 1500 Hz 

Material: tempered, cold rolled steel 



Experiments: 

1. Recording of tones and  Fourier 

Analysis: 

Experimental set-up: 



 Fourier Analysis: 

 The Fourier Analysis is a mathematical method which 
determines the different frequencies of the tone and their 
intensities and plots them in a diagram. 

Voltage in V: 

Frequency in Hz: 

Basic frequency 476 Hz 

Frequencies of 

the overtones 



2. Chladni Sound Figures: 

• We spread small pieces of iron on the saw 

blade and then played a tone 

- You can see the 

development of 

characteristic nodelines 

- We observed          

nodelines 

approximately 

rectangular shaped 



Evaluation of the Chladni Sound 

Figures: 

• Only a part of the saw oscillates 

• Boundary conditions: 

- In X- direction:  

 free edges, 2 nodelines 

- In Y- direction:  

 clamped edges 

•  The oscillation consists of 
transversal waves 



• We have standing transversal waves in our saw 
blade 

• But it was not possible to measure the speed of 
sound of them experimentally 

 

3. Determination of the speed of 

sound in the saw blade: 

From the formulas of transversal and  

longitudinal waves we know: 



ct

cl
.59



 We could measure the speed of 
sound of longitudinal waves: 

Experimental set-up: 

The saw lies on a      
piezoelectric crystal. 

With a metallic stick 
we give a compression 
pulse on the  long side 
of the saw blade.  



Analysis: 

The compression pulse is 
reflected at both ends of 
the saw blade: 

c = 2s/T 

c: Speed of sound 

s: Length of the saw blade 

T: Time between the maxima 

Voltage in V: 

Time in s: 



Speed of sound of longitudinal waves: 

• For a straight saw blade we measured an 

average speed of sound of cl = 5693 m/s 

• Speed of sound of tranversal waves: 

 ct = 0.59cl =  3353 m/s 

 This corresponds well to our calculated value 

      of ct which is:   

 
sm

E
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E: Young‘s modul of elasticity 

: Density of steel 

: Poissons ratio (about 0,3) 



4. Determination of the vibrating 

part of the saw 

Experimentel set-up: 

The saw is clamped 
into a special holding 
device. 

This device allows us 
to make reproducible 
and exact measure- 
ments of the vibrating 
part of the saw blade. 



Measurement of the vibrating part of 

the saw 

Area in cm² 

Frequency in Hz 

• A loudspeaker stimulates the saw 
blade to oscillations 

• We touch the edge of the saw on 
different points 

 If we touch the vibrating part 
of the saw, the tone breaks off 

• The results of our measurement 
and a regression function ~ 1/A 
are ploted in the diagram 

Manual Method: 



• A loudspeaker stimulates the saw blade to oscillations  

• Then a Laser beam is pointed at different parts of the 

saw blade. 

• For the measurements one watches the reflection of 

the beam on a white wall. 

 If the laser is pointed on a vibrating part of the saw 

blade the reflection is out of focus.  

 If the laser is pointed on a resting part of the saw 

blade the reflection is sharp. 

Measurement of the vibrating part of 

the saw 

Laser - Method: 



Equation of motion for transversal 

waves in thin plates: 

Theory: 
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E: Young‘s modul of elasticity 
h: Thickness 
t: Time 
z: Elongation 



Formulation for harmonic 

solutions: 

z: Elongation of the oscillation 

( )z , ,x y t ( )Zo ,x y e
( )j w t

(2) 

Substitute z(x,y,t) with Zo(x,y) e jwt : 

(3) 
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With w = 2f we get for the frequency f: 

f .0459 k
2

ct h (5) 

We define the product:  
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The product k4 depends on the boundary conditions of 

the oscillation. 



We can write Zo(x,y) as a product 

of two functions: 

Zo(x,y) = X(x)*Y(y) 

(6)  
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Wave equation: 

Boundary conditions: 

Free edges in x-direction: 

Kosine function 

Clamped edges in y-direction: 

Sinus function 

k1 2
m 

Lx

(9) k2

n 

Ly

(10) 

In X- direction: 
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In Y- direction: 
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For the wave number k we get 

from the differential equation: 

k1
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With the boundary conditions we get: 



Our solution for the frequency 

is therefore: 

m,n:  Integers  

 For our basic oscillation  m,n =1  

h: Thickness 

Lx:  Length of the vibrating part 

Ly: Width of the vibrating part 

f .453 ct h
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Example: 

With the measured values: 

h = 0.85 mm   ct  = 3353 m/s 

Lx= 8.05 cm   Ly = 20.05 cm 

Measured value:  f = 813 Hz 

Calculated value:  f = 827 Hz 

Comparison of Experiment and Theory 



Comparison of Experiment and Theory 

• Calculated values of 
the frequencies, Lx 
und Ly are determined 
experimentally 

• Regression function as 
f ~ 1/A 

 • Red points: measured 

   values of the frequency   

   by Fourieranalysis 

 Good agreement 

Frequency in Hz 

Area in cm² 



The frequency depends on the of 

the vibrating part of the saw 

 The frequency depends on the size of the vibrating part  

 A = Lx*Ly of the saw if Lx/Ly is constant. 

 We determined Lx/Ly from our measurements: 

  = Lx/Ly = 0,336  0,042 
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Through transforming of the  formula of the 

frequency we get: 



Summary: 

The frequency depends on: 

 The bending of the saw blade which is 

significant for the size  of the vibrating 

part and the point one bows the saw 

 The material of the saw 

 The thickness of the saw 

  

 


