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Introduction 
In this task we were asked to “build model car powered by an engine, using an 
elastic air-filled toy-balloon as the energy source”. Then two main questions were 
raised: dependences of distance, travelled by such a car, on relevant parameters 
and maximizing efficiency of the car. 
Obviously, we had to start from the first part of the task, building a model car. Since 
we had to increase distance travelled by car, we tried to reduce all friction forces; 
respectively, model had also to be as light as possible. 
The balloon we had chosen for the car was a spherical rubber balloon, capable of 
stretching up to the volume of 40 liters. Spherical shape had been chosen because it 
made all calculations easier, and had no drawbacks compared to other shapes (it will 
be proven later in the article, that air drag is negligibly small). 
Another major part of the car was engine; the very first idea was just to attach a 
nozzle to a balloon, creating a rocket-type car. We had also tried several concepts 
for using air stream to produce a rotational motion of the car’s wheels. However, high 
number of moving parts caused additional losses of energy on friction, making all 
those prototypes ineffective, compared to a simple propulsion engine. 

Car 
Fig.1 shows our final version of the car. Its body (A) was 
cut out of sheet of balsa (6 mm thick). Length and width 
of the body were chosen through a series of tests, where 
car’s stability had been checked (we tried to make car as 
small as possible; however, too small models tended to 
turn over; also, balloon could touch the wheels). 
For reducing friction in the axes we had used bearings 
(B) (inner diameter 3 mm, outer 7 mm), to which we 
could attach different wheels. Bearings were placed on 
the small metal rods; other end of the rods was put into 
small pieces of balsa. These pieces of balsa were 

attached to the car’s body with needles. By changing angle between forward and 
rear wheels it was possible to set car for circle trajectory (since finding a long enough 
even surface wasn’t always possible). 
A clothespin (C) had been used for holding the nozzle, 
attached to the balloon. Small pieces of adhesive tape (D) 
prevented deflated balloon from falling down and touching 
the ground. 
Efficiency 
To describe efficiency of the car we used efficiency 
coefficient: 
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where A is useful work, and E is full energy of the system. 
For our car full energy is the energy stored in the balloon. 

Figure  2. Smile makes 
everything obvious.  

Figure 1. Scheme of the car. 



But what is useful work for our system? What is main purpose of the car? Why do we 
use it? To understand it I’ve painted fig.2. And it became obvious: car is used to 
overcome friction. If energy from the balloon was used to overcome friction, it means 
that car has moved something forward, and, therefore, done something useful. And if 
energy was spent on the turbulence in the nozzle or on air drag, then it was wasted. 
Energy in the balloon 
The energy source for the car is balloon, so we have to determine how much energy 
it stores. Note, that energy hides itself in two places: in pressurized air inside balloon 
and in the balloon itself – as energy of the stretched rubber. 
Let’s assume that balloon now has volume V1 and pressure of air is P1. The 
maximum energy from this air can be gained if it expands adiabatically, as there are 
no losses through heat. Air would expand until its pressure is equal to atmospheric 
pressure Patm. Through equation of adiabatic process volume of the air after 
expansion can be found: 
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Now, it is possible to calculate work, done by the 
expanding air: 
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Please note, I don’t say that anywhere in the car an 
adiabatic process occurs, or that I want it to occur. 
This calculation is used to find the energy which is 
stored in air, independently of any processes in the 
car. 
However, to use this formula we need to know 
pressure in the balloon and its volume. They can be 
connected through the mechanical stress in the 

balloon’s shell. On one hand, relative increase of area of some small part of the shell 
can be found as: 
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where E is Young’s modulus, µ is 
Poisson’s ratio, σ is mechanical stress. 
Relative increase of area of the whole 
surface of the balloon will be the same, 
and as soon as our balloon is a sphere, it 
will be 3/2 of relative increase of balloon’s 
volume.  
On the other hand, if we consider elastic 
force acting on a small part of the 
balloon’s shell, because of the curve of 
surface it will have some projection 
towards balloon’s center (as shown on fig.3). This small force should be equal to the 
pressure force acting on this part of shell, so difference between pressure inside the 
balloon and atmospheric pressure is: 
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Figure 3 . Elastic force, acting on 
a small piece of shell, and its 
component, directed towards 
center. 

Figure 4. Line is plot of theoretical formula, 
while dots are experimental. Average error of 
volume measurements is 0.0008 m 3  



where d is width of the shell, R is balloon’s radius. Now, if two equations are 
combined: 
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where V0 is original volume of the balloon. This formula is checked in the fig.4, where 
dependence of extra pressure ∆P on the total volume of balloon is shown. Certainly, 
we also had to know rubber’s properties for plotting formula. Our measurements had 
shown that rubber’s Young’s modulus E was equal to (0.47±0.03) MPa, Poisson’s 
ratio µ=(0.46±0.02); also width of the balloon shell d was (0.23±0.01) mm. 
For volumes less than 1.8 liters results calculated through the formula are correct; 
however, at volume of 1.8 liters rubber reaches its proportionality limit and for bigger 
volumes it doesn’t behave according to Hooke’s law anymore. Since in this area 
even very small increase in stretching force will cause a significant deformation, we 
approximated that after volume of 1.8 liters pressure will remain constant. 

Energy of rubber   
Rubber itself also stores energy. Knowing 
mechanical stress in the shell, energy density 
can be calculated as: 
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Therefore, energy in the shell is: 
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Certainly, the formula should be checked. So 
how can be energy stored in rubber 
measured? Well, we can easily find work done 
by the pump, when we are inflating balloon (for 
example, we can put a weight on the pump – 

change of weight’s potential energy will be equal to the work done by the pump). So, 
this difference in potential energy of the weight ∆Ep will turn into energy of 
pressurized air Eair1, energy of rubber ER and energy of losses EL (due to friction in 
the pump and heating of the air): 
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How can we find these losses? The answer is: let’s inflate something else, with shell 
which can’t be stretched; for example, a plastic bag. Now, work of the pump will turn 
into energy of the air and energy of losses: 
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Since change in weight’s potential energy and energy of losses are same in both 
cases: 
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Eair1 and Eair2 can be calculated through volume and pressure of air in the balloon 
and plastic bag. Results of these manipulations are shown on fig.5. Again, at the 
volume of 1.8 liters rubber reaches its proportionality limit; therefore energy density 

Figure 5. Dependence of the rubber 
energy on the volume. Line shows 
theoretical prediction, dots are 
experimental data.  



will remain constant, and rubber energy will increase because of the increase of the 
volume of the shell itself. 
It also should be noted, that for volumes less than 0.0005 m3 formula, in fact, tries to 
predict energy of the compressed balloon’s shell and, therefore, this area of plot 
shouldn’t be considered. 
Efficiency 
In the car, energy losses occur in the nozzle and also some energy is used to 
overcome air drag. However, air drag had been very small. To prove it, an 
experiment was made: we had put a sheet of cardboard on our car; first time – 
horizontally (for small drag), second time – vertically (for increased drag). Then we 
pushed the car forward manually and plotted law of its movement (fig.6). The 
difference between forces, which were stopping the car in two cases is less than 5%. 
Therefore, air drag can be ignored.  

Unlike air drag, losses in nozzle are 
significant. There are three reasons of 
loosing energy in nozzle: turbulence, viscous 
drag and scattering of the jet, after it exits 
nozzle. Amount of energy, lost in any of this 
ways, strongly depends on the length and 
width of the nozzle. It is difficult to describe 
this dependence even for just one of the 
effects; describing all three effects at once is 
almost impossible. Therefore, we tried to 
research dependence of the efficiency 
coefficient on the nozzle parameters 
experimentally. We had inflated balloon to 
the same volume for all launches; 
respectively, full energies were equal. We 
also kept car’s mass the same, so friction forces were the same either. Therefore, 
the only thing changed with changing of efficiency coefficient was distance, travelled 
by car: 
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where Ffr is total friction force acting on the car and L is distance travelled by car. 
That is why instead of plotting efficiency coefficient against nozzle diameter, we 
plotted L against nozzle diameter (fig.7) – anyway, efficiency coefficient plot will look 
all the same, just multiplied by a constant value. 

Figure 6. Left plot shows travel when a sheet of cardboard w as placed horizontally, 
right – when vertically. Both are fitted by square parabola.  

Figure 7. Arrow points at the dots, where 
car hasn’t moved at all. Black line shows 
nozzle diameter, after which car becomes 
unstable.  



Let’s take a closer look at the plot. With too small diameter car just can’t move 
forward (first two dots). Then we have a local maximum of efficiency, and in the end 
dependence is growing. Unfortunately, with nozzle diameters bigger than 20 mm car 
is incapable of holding stable trajectory. But we can predict, that there will be another 
local maximum, after which dependence will fall to 0. It is easy to prove: if we take 
our balloon and stick adhesive tape over its equator, and then pierce it. The side, 
which we’ve pierced, will explode and let the air out; adhesive tape will prevent the 
other side from tearing apart. So we will achieve nozzle diameter equal to the 
diameter of the balloon. But when we had performed such experiment, our car 
travelled only 5 cm. Knowing all this, we can say that for maximal efficiency 
coefficient we should use the nozzle diameter from the first local maximum. 
Unfortunately, for the length of the nozzle even experimental dependence wasn’t 
found: dots were jumping randomly. 
Travelled distance 
It is very interesting, that even if efficiency coefficient remains the same, travelled 
distance still can be varied through varying friction force. 
In fact, there are two friction forces, acting in our system: rolling friction force (F1) and 
static friction in the axes (F2). These forces will be calculated as: 
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where R is wheels radius, M is car’s body mass, n is number of wheels, σ is surface 
density of wheel’s material, k and µ are static and rolling friction coefficients 
respectively. If car has travelled distance L, then work of rolling friction will be F1*L; 
however, work of static friction will be F2*L*(r/R), where r is radius of the axis; it is so 
because static friction force is applied closer to wheel’s center, where smaller 
distance will be covered. In total work of friction forces is equal: 
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Since we want for L to be maximal, we have to make X(R) minimal; to find its 
minimum we can take its derivative and put it equal to 0: 
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After solving these equations, a formula 
for optimal wheel radius is achieved: 

σπ
µ

nk

rkM
R

)( +=  

It is interesting to note, that total mass 
of the wheels in this case is connected 
with car’s body mass by this equation:  
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Experimental check 
To check dependence of the distance 
travelled on wheels’ radius it was 
necessary to find friction coefficients for 
our model. For finding static friction 

coefficient in the axis we had removed metal rod with bearing and wheel from the car 
and mounted it into a support. Then we painted a small dot on the edge of the wheel, 

Figure 8. Dots show experimental data, line is 
theoretical dependence.  



and rotated it, filming everything on the high-speed camera. From the video, we had 
plotted angular velocity of the wheel depending on time. This dependence was 
linear; therefore, proving that we really can consider friction in the bearing as static. 
Then through angular coefficient of the line we had calculated static friction force and 
static friction coefficient. For finding rolling friction force we had performed same 
operation as for finding air drag: we had pushed car forward and plotted its motion; 
through this plot we found total friction force, acting on the car. Also we could already 
calculate static friction force; the difference between total friction force and static 
friction force was equal to rolling friction force. Through the rolling friction force we 
could calculate rolling friction coefficient. 
Putting these friction coefficients into theoretical formula we plotted theoretical line, 
as seen on fig.7. Now we had to make experimental points. Since we had constant 
efficiency coefficient, constant amount of energy was used for overcoming friction 
forces. So, to increase accuracy of measurements, we had decided to give this 
amount of energy not through inflated balloon, but through a pendulum: it was turned 
to same angle and then released. It was hitting car, and car was moving forward 
(fig.8), having same amount of energy each time. It should be noted, that we hadn’t 
checked wheels with radius close to optimal value, because they were too big to fit 
the car. Well, just one wheel was size of the whole car. 
Conclusions 
Full energy stored in the balloon is a sum of energy of pressurized air and of 
stretched rubber. With help of the equation, which connects pressure and volume of 
the balloon, we can calculate both those energies. 
All this energy goes into two places: some is used to overcome friction forces – that’s 
useful work; other is wasted on the losses in the nozzle. Air drag for our car was 
negligibly low. 
Efficiency coefficient depends on the nozzle length and diameter; however, it’s 
impossible to describe these dependences theoretically. Experimentally we have 
found two peak values for the nozzle diameter; the first one should be used, because 
with second car became unstable. 
Distance travelled by car depends mainly on the wheels’ parameters. They all can be 
connected in order to calculate optimal radius; however, it appears to be too big to 
use. 


