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Here we were asked to “build model car powered by an engine, using an elastic air-
filled toy-balloon as the energy source”. Then two main questions were raised: 
dependences of distance, travelled by such a car, on relevant parameters and 
maximizing efficiency of the car. 
Certainly, finding how much a car can travel, and how efficient it is, is pretty difficult, 
if we have no idea about how much fuel it has. In our case, energy source is balloon, 
so we have to determine how much energy it stores. Note, that energy hides itself in 
two places: in pressurized air inside balloon and in the balloon itself – as energy of 
the stretched rubber. 
Let’s assume that balloon now has volume V1 and pressure of air is P1. The 
maximum energy from this air can be gained if it expands adiabatically, as there are 
no losses through heat. Air would expand until it’s pressure is equal to atmospheric 
pressure Patm. Through equation of adiabatic process volume of the air after 
expansion can be found: 
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Now, it is possible to calculate work, done by the expanding air: 
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Please note, I don’t say that anywhere in the car an adiabatic process occurs, or that 
I want it to occur. This calculation is used to find the energy which is STORED in air, 
independently of any processes in the car. 

However, to use this formula we need to know 
pressure in the balloon and it’s volume. Finding it 
through experiment every time ends up with very tired 
me and a lot of broken equipment. So, it would have 
been great if we found theoretical dependence of the 
pressure on balloon’s volume. Let’s try: they can be 
connected through the mechanical stress in the 
balloon’s shell. On one hand, relative increase of area 
of some small part of the shell can be found as: 
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where E is Young modulus, µ is Poisson’s ratio, σ is 
mechanical stress. Relative increase of area of the whole surface of the balloon will 
be the same, and as soon as our balloon is a sphere, it will be 3/2 of relative 

increase of balloon’s volume.  
On the other hand, if we consider elastic force acting 
on a small part of the balloon’s shell, because of the 
curve of surface it will have some projection towards 
balloon’s center (as shown on fig.1). This small force 

Figure 1. Elastic force, acting 
on a small piece of shell, and 
it’s component, directed 
towards center. 



should be equal to the pressure force acting on this part of shell, so difference 
between pressure inside the balloon and atmospheric pressure is: 
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where d is width of the shell, R is 
balloon’s radius. Now, if two equations 
are combined, we get king-sized burger: 
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where V0 is original volume of the 
balloon. On the fig.2 this burger is 
checked. For volumes less than 1.8 liters 
results are correct; however, for bigger 
volumes rubber starts misbehaving – it 
doesn’t behave according to Hook’s law 
anymore, and goes into super-elastic steady. Therefore, we approximated that after 
volume of 1.8 liters pressure will remain constant.  
But we remember, that rubber itself also stores energy. Knowing mechanical stress 
in the shell, energy density can be calculated as: 
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Therefore, energy in the shell is: 
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That’s just great, but it definitely requires checking. So how can be energy stored in 
rubber measured? Well, we can easily find work done by the pump, when we are 
inflating balloon (for example, we can put a weight on the pump – change of weight’s 
potential energy will be equal to the work done by the pump). The difference 
between work, done by the pump, and energy of air inside the balloon should be 

equal to the energy of rubber. And, 
unfortunately, to all losses which occurred 
while inflating the balloon. How can we avoid 
adding these losses? The answer is: let’s 
inflate something else, with shell which can’t 
be stretched. For example, a frog. No, wait, 
it’s forbidden – if inflated too much it can 
explode and I’ll have to clean everything… 
Then let’s inflate a plastic bag. All useful work 
of the pump will turn into energy of the air; and 
losses won’t be included. Now we should do 
the same work with the pump to inflate our 
balloon. Difference between the energy of air 
inside plastic bag and balloon will be energy, 
stored in rubber. Result of this brilliant idea is 
shown on fig.3. Again, after volume of 1.8 

liters rubber goes into super-elastic steady; therefore energy density will remain 

Figure 2. Line is plot of theoretical formula, 
while dots are experimental. Average error of 
volume measurements is 0.0008 m 3  

Figure 3. Dependence of the rubber 
energy on the volume. Line shows 
theoretical prediction, dots are 
experimental data.  



constant, and rubber energy will increase because of the increase of the volume of 
the shell itself.   
Now we know full energy stored in the car; but in order to 
find it’s efficiency we have to decide what is useful work for 
our system. What is main purpose of the car? Why do we 
use it? To understand it I’ve painted fig.4. And it became 
obvious: car is used to overcome friction. If energy from the 
balloon was used to overcome friction, it means that car 
has moved something forward, and, therefore, done 
something useful. And if energy was spent on the 
turbulence in the nozzle or on air drag, then it was wasted. 
So we know our enemy: we should fight losses in the 
nozzle and air drag. However, fighting air drag is like 
fighting a baby. It’s just too small. To prove it, an experiment was made: we had put 
a sheet of cardboard on our car; first time – horizontally (for small drag), second time 
– vertically (for increased drag). Then we kicked car forward and plotted law of it’s 
movement (fig.5). The difference between forces, which 
were stopping the car in two cases is less than 5%. 
Therefore, air drag can be ignored. Unfortunately, losses in nozzle can not.  
There are three reasons of loosing energy in nozzle: turbulence, viscous drag and 

scattering of the jet, after it exits nozzle. Amount of energy, lost in any of this ways, 
strongly depends on the length and width of the nozzle. It is difficult to describe this 
dependence even for just one of the effects; 
describing all three effects at once is almost 
impossible. Therefore, we tried to research 
these dependences experimentally. And even 
through experiments we havn’t found 
dependence on the length of the nozzle: dots 
were jumping randomly. However, on the fig.6 
you can see dependence of distance travelled 
on the diameter of the nozzle. With too small 
diameter car just can’t move forward (first two 
dots). Then we have a local maximum, and in 

the end dependence is growing. 
Unfortunately, with nozzle diameters bigger 
than 20 mm car becomes unstable (tries to 
kill itself by crashing into closest wall). But we 

Figure 4. Smile  makes 
everything obvious.  

Figure 5. Left plot shows travel when a sheet of cardboard w as placed horizontally, 
right – when vertically. Both are fitted by square parabola.  

Figure 6. Arrow points at the dots, where 
car hasn’t moved at all. Black line shows 
nozzle diameter, after which car becomes 
unstable.  



can predict, that there will be another local maximum, after which dependence will 
fall to 0. It is easy to prove: if we take our balloon and stick adhesive tape over it’s 
equator, and then pierce it. The side, which we’ve pierced, will explode and let the air 
out; adhesive tape will prevent the other side from tearing apart. So we will achieve 
nozzle diameter equal to the diameter of the balloon. But when we performed such 
experiment, our car travelled only 5 cm. Knowing all this, we can say that for 
maximal efficiency we should use the nozzle diameter from the first local maximum. 
It is very interesting, that our losses do not depend on the distance, travelled by car: 
losses in nozzle depend only on nozzle parameters, and air drag is too small.  At the 
same time, energy, stored in the balloon, also doesn’t depend on the travelled 
distance. So, if we have inflated our balloon and attached a nozzle to it, we have 
already determined how much energy will be spent on useful work – overcoming 
friction. Therefore, the only way to change travelled distance now is to change 
friction forces. 
There are two friction forces, acting in our system: rolling friction force (F1) and static 
friction in the axes (F2). These forces will be calculated as: 
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where R is wheels radius, M is car’s body mass, n is number of wheels, σ is surface 
density of wheel’s material, k and µ are static and rolling friction coefficients 
respectively. If car has travelled distance L, then work of rolling friction will be F1*L; 
however, work of static friction will be F2*L*(r/R), where r is radius of the axis; it is so 
because static friction force is applied closer to wheel’s center, where smaller 
distance will be covered. In total work of friction forces is equal: 
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Since we want for L to be maximal, we have to make X(R) minimal; to find it’s 
minimum we can take it’s derivative and put it equal to 0: 
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After solving these equations, a formula 
for optimal wheel radius is achieved: 
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It is interesting to note, that total mass 
of the wheels in this case is connected 
with car’s body mass by this equation:  
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To check dependence of the distance 
travelled on wheels’ radius it was 
necessary to transfer constant amount 
of energy to the car. Inflating balloon so 
many times seemed too difficult, so, 

instead of it, a pendulum was used: it was hitting car, and car was moving forward 
(fig.7). It should be noted, that we hadn’t checked wheels with radius close to optimal 
value, because they were too big to fit the car. Well, just one wheel was size of the 
whole car. 

Figure 7. Dots show experimental data, line is 
theoretical dependence.  



Ok, while trying to destroy the car with pendulum, my fingers had some rest after 
cutting lots of wheels out of cardboard; so now I can write conclusions. 
Full energy stored in the balloon is a sum of energy of pressurized air and of 
stretched rubber. With help of the equation, which connects pressure and volume of 
the balloon, we can calculate both those energies. 
All this energy goes into two places: some is used to overcome friction forces – that’s 
useful work; other is wasted on the losses in the nozzle. Air drag for our car was 
negligibly low. 
Amount of losses in the nozzle depends on it’s length and diameter; however, it’s 
impossible to describe these dependences theoretically. Experimentally we have 
found two peak values for the nozzle diameter; the first one should be used, because 
with second car’s driver becomes a drunk suicidal teen. 
Distance travelled by car depends mainly on the wheels’ parameters. They all can be 
connected in order to calculate optimal radius; however, it is pretty big and not very 
convenient to use. 
In the end I will ask you to keep silence for a minute, in memory of the car model, 
which was used during experiments. When trying to find dependence on the length 
of the nozzle at some moment I had become very angry, and kicked the car in the 
rear wheel. Doctor said, car had no chances with such injuries. Thanks God, I 
managed to clone the car and continue experiments. 


