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This task asks us to investigate a very interesting phenomenon: if a wire with weights 
attached to each end is placed across a block of ice, this wire may pass through the 
ice without cutting it. After I had heard about this problem, I’ve immediately decided 
to solve it. Who knows, maybe results will help me to pass through concrete walls 
(spoiler: they won’t). 
Certainly, in the beginning there were some doubts even that wire may actually pass 
through the ice and not divide it into two parts; therefore, first thing to do was to 
check, if it is possible. But together with ice cubes, a trouble had jumped out of 
refrigerator: those ice cubes had a non-transparent region in their central part. The 
explanation is hidden in the water itself: it’s air and other gases, dissolved there. 
These gases can’t freeze together with water, and when it crystallizes they just leave 
it. However, when a vessel with water is put in a refrigerator, first the outer parts of 
water will turn into solid state, and gasses in the water in the inner part will be 
captured inside. And when this water finally crystallizes, gases form small bubbles, 
which make ice non-transparent. Certainly, they also change mechanical and 
thermodynamic properties of the ice, and it’s difficult to predict how exactly. 
Fortunately, this non-transparent region isn’t too big, and it is possible to run 
experiments in the region with clear ice. 
Anyway, first experiments were successful: ice really remained in one part. In fact, 
even if we have two blocks of ice, they tend to become one. If environment 
temperature is positive, there is a thin layer of melted water on the ice. But when two 
ice cubes are put I contact, heat from this water is sucked by ice (we had 
accidentally dropped Dracula into the water, while it was freezing); thereby, water 
crystallizes, connecting two blocks together. However, after it had happened, there is 
no slit on the surface of the ice in the place, where cubes had connected. And if wire 
passes through the ice, it lefts a notable slit; it proves that these are two different 
phenomena. 
But what have happened to the ice, which was in the place of the slit? It have 
definitely melted. And it definitely was melting faster, than all other ice. Everything 
has some reason (even though sometimes this reason is “God wants it to be so”); 
and so does this accelerated melting. The matter is that volume of a portion of ice at 
the temperature 0°C is bigger than volume of the sa me portion of water at the same 
temperature; therefore, if we apply pressure to the ice, we help it to decrease it’s 
volume, correspondingly, assisting in melting. For example, if ice is under pressure 
of 130 bar, it will melt at the temperature -1°C. A nd everybody knows, that in 
atmospheric pressure ice melts at 0°C. Approximatin g, that between these two 
points dependence of melting temperature on applied pressure is linear, we can 
write: 
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where P is applied pressure, and T(P) is temperature at which ice will start melting. 
So, let’s describe what’s exactly happening in our experiment. When a wire is placed 
across a(n ice) cube, pressure is applied to a small portion of ice, so it melts at 



negative temperature (it certainly requires some heat, but it comes from the 
environment). Once it is turned into water, pressure pushes it upwards, around the 
wire. During this movement water heats up almost to 0°C. But when water reaches 
top side of the wire, there is no more pressure; water now is super-cooled, therefore 
it instantly crystallizes, releasing heat. This heat is transferred down through the wire 
and is used to melt a new portion of ice. And the whole story repeats. 
This theory can be used to build a mathematical model. A correct theory can be used 
to build a correct mathematical model. Unexpectedly, our theory is correct: it is 
proved by the fact that wire leaves a turbid trace in the ice. It occurs exactly because 
of super-cooled liquid crystallization. Liquid starts to crystallize around different dirt 
particles; as there’s always lots of dirt everywhere, a lot of crystals are growing at the 
same time. That is why not one solid crystal is formed, but a set of small ones. 
Borders between these crystals scatter light, making the whole structure less 
transparent than usual crystal of ice. 
Now, once we believe that our mathematical model will be correct, we can start 
building it. Our theory says, that all the ice involved in the cycle one time melts into 
water, and one time heats up. Thereby, our Need for Heat is: 
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where c is water’s heat capacity, λ is specific heat of fusion,T0 is original temperature 
of ice, and m is mass of ice under the wire, it can be calculated as m=ρhdl; where ρ 
is ice’s density, h is height of the ice block, d is wire’s diameter and l is length of the 
part of the wire which touches ice. We know, that all this heat have to pass through 
the wire. Heat flux through the wire is: 
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where K is wire material’s heat conductivity, S is area of contact of wire with 
crystallizing water. Thereby, time, required for the wire to pass through the ice, is: 
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where M is total mass of the weights attached to the wire. We can see, that time is 
proportional to the square of wire’s diameter and inversely proportional to the mass 
of load. Certainly, we want to check if it’s true. And it requires an experimental setup. 

A block of ice is placed onto a 
piece of wood (to reduce melting), 
which is mounted in two supports. 
There is a slit made in the wooden 
block, so that wire could continue 
moving down after exiting ice 
cube. In our calculations we have 
assumed, that wire inside the ice 
isn’t curved. To achieve it in 
experiment the wire is mounted in 
a fretsaw, instead of it’s blade. 
Load is attached to the fretsaw 
(fig.1).  

Using this experimental setup dependence of the time of cutting on the load’s mass 
was checked (fig.2). Experiment proves our theory. I’d like to say the same about 
dependence of the time on the wire’s diameter (fig.3). Unfortunately, it is rather 
difficult to find several wires of different diameters, but with 100% equal chemical 

Figure 1. Experimental setup. After wire exits ice, it 
falls onto the wooden block and tears apart because  
of the impact. Too bad for the small human…  



composition. We had found only three wires, in composition of which we were 
completely sure. And three dots are a little bit not enough to say that everything’s 
fine. In fact, everything is awful. Just take a look at Table 1. 
 
Table 1. Cutting times for copper wires with differ ent parameters. 

Wire’s diameter, mm Load’s mass, kg Cutting time 
0.6 5 18 min 20 s 
1.35 5 8 min 50 s 
1.45 5 8 min 08 s 
1.45 1 9 min 20 s 
 
You can see, that for copper wire increase in diameter decreases time, and changing 
of load’s mass almost doesn’t affect anything. But why our dependences stopped 
working? What’s so special about copper, comparing to previously used nichrome? It 
is heat conductivity: copper’s heat conductivity is about 8 times higher than 
nichrome’s. When wire invades ice, it serves as a bridge for heat transfer from 
environment. For nichrome, such heat inflow was significantly smaller than heat, 
released from crystallizing water; for copper, however, the picture is different. And if 
we increase wire’s diameter we increase heat income from environment; if mass of 
load is changed, it affects temperature of water melting, which is, in this case, less 

Figure 2. Plot of cutting time subject to loads mass for the nichrome wire (d=0.4 mm), and it’s 
linearization. Fitted by hyperbola. 

Figure 3. Time of cutting for three nichrome wires with 6 kg  weight attached, and linearization 
of this dependence. Fitted by square parabola. 



important. So, to make our model work for wires with high heat conductivity, it is 
required to take into account heat income. Since above the wire temperature is 0°C 
and under it it’s T(P), we can approximate, that whole wire has temperature T(P)/2. 
Experimentally we have found, that distance y between the last point of wire, where 
temperature is equal to air one, and the first point where it is equal T(P)/2, is about 3 
cm. Thereby heat flux through the one side of the wire: 
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where Tair is air temperature. Since wire has two ends, total income of heat from 
environment is 2*W2. But we not only have made theory to correspond experiment; 
we’ve also forced experiment to be like theory: we have established an inflow-less 
experiment. I’ve been kicked outside (Tair was about 0.5°C) together with 
experimental setup; I’ve also put melting snow around free ends of the copper wire, 
so there were almost no heat income. Most results of this experiment can be seen 
on the fig.4. The result which isn’t shown there, is that I’ve almost turned into an ice 
sculpture, while writing down data. 
But once we have taken into account what we 
gain, we should also calculate what we are 
loosing. You remember, there’s an angry 
Transylvanian count somewhere inside our ice 
cube, and he continues to suck out heat from 
the crystallizing water. And if you say that trip 
through Romania has damaged my brain, I 
can answer that there’s nothing to be 
damaged. And that it’s true, that not all heat 
from crystallizing water goes down through the 
wire; part of it escapes into surrounding ice. 
Once again, it was experimentally found, that 
on the distance of about 1 cm from the wire 
ice’s temperature hasn’t changed during 
experiment. Assuming that heat escapes from 
the wire, and from the zone above wire, heat flux into one side can be calculated as: 
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Total lack of heat will be 2*W3. And once we’ve started to be so precise, let’s take 
into account, that specific heat of fusion depends on the temperature, at which 
melting occurs: for water at 0°C λ=330 kJ/kg, and at -7°C it’s 317 kJ/kg. Once again,  
in this part the dependence can be approximated as linear; which means that 
dependence on the pressure is also linear. Now, combining this all, General Formula 
is born: 
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If you understand what all these letters mean, then you’ve been REALLY attentive… 
But if you don’t understand something, it just means that you don’t have superhuman 
abilities. 

Figure 4.  At first wire moves slow, as it’s 
only accumulating heat, required for 
melting first portion of ice. But then 
cycle finally starts, and wire moves with 
constant velocity.   



And while you are regretting not-having superhuman abilities (or designing your new 
super suit – who knows?), I’ll proceed to the conclusions. Because of the pressure 
ice under wire melts at negative temperature; in liquid form it goes upwards and 
freezes back under the wire, creating turbid region. Then cycle continues again and 
again. However, for materials with high heat conductivity it is necessary to take into 
account income of heat from the environment through the wire. To improve 
mathematical model further, it is possible to calculate heat losses and affect of 
melting temperature on the specific heat of fusion. 
Experiments prove these qualitative and quantitative models; however, it should be 
noted that wire must go through the transparent region of the ice block, because 
properties of the non-transparent region are significantly different. 
Had it any practical sense? I still can’t pass through concrete walls… However, 
thanks to General Formula, we now know how much time has left for the small 
human, who is standing under the load. Tick-tock… 


