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Abstract 
The present paper is a solution to IYPT 2010 problem no. 16, “Rotating Spring”. The 
main objective is to investigate the expansion of a helical spring rotated about one of 
its ends around a vertical axis. The effect of an additional mass attached to its free 
end is also a subject of investigation. This investigation is done in means of 
approximations leading to an analytical solution, as well as a developed numerical 
solution solving the differential equations assuming equilibrium of the forces in the 
rotating coordinate system. Both the analytical and numerical solutions are 
compared to physical experiments made by the author to examine the theoretical 
achievements. 
 
 
Introduction 
“A helical spring is rotated about one of its ends around a vertical axis. Investigate 
the expansion of the spring with and without an additional mass attached to its free 
end.” 
 
Assuming the equilibrium condition in the rotating coordinate system, three forces 
would be exerted to every differential mass. The gravitational force, the spring force 
caused by its deformation, and the figurative centrifugal force that must be 
considered since an accelerated coordinate system is being used. The spring 
tension force will be calculated assuming the Hooke’s law. This law is applicable in a 
limited range of strain in the spring; the range in which it remains elastic. So the 
spring tension force will be a function of the spring modulus (µ), the spring initial 
length (l) and the change of length (∆l). 

l

l
FSpring

∆−= µ  (1) 

Note that the modulus was used instead of the spring constant because of being 
independent on the spring dimensions. For the same reason, the spring linear 
density (λ) will be used as the parameter instead of the spring mass. 
 
 
The solution of this problem in the case where the mass of the spring causes extra 
tension and strain is complicated to solve. To solve this general case, we will later 
present a numerical solution. However, initially an approximation will be given to 
describe the case when the mass of the spring is negligible compared to the 
additional mass attached. In this case, the spring could be considered as a whole, 
absolutely linear and weightless. So the three forces acting on the additional mass 
must be in equilibrium. 
Equilibrium in the x direction states: 
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Which can be satisfied by x=0, or: 
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Equilibrium in the y direction states: 

   (4) 
 

Here θ is the angle between the spring and the rotation axis. If x = 0 then cos(θ) = 1, 
so: 

   (5) 
 
Note that according to (4) the length cannot be smaller than this value. It can be 
shown that in the case where equation (3) predicts a larger length than equation (5), 
the one predicted by (3) is stable and the one predicted by (5) is unstable. Otherwise 
the prediction of (5) is impossible. So the spring length is: 
 

 (6) 
 
This result will be addressed as the analytical solution and will be compared to the 
physical experiments in the discussion. 
 
Governing Equations 
Because of the mass distribution of the spring along its length, the force needed to 
hold and rotate the free part of the spring differs in different points along its length. 
Thus the tension in the spring is not constant, making the linear density also a 
function of position. So the mass distribution of the spring itself is a function of the 
tension along the spring. 
 
The equilibrium condition states that for each differential segment of length on the 
spring, the sum of the forces must be zero. Thus: 

   (7) 
Here T is spring tension, as a function of position, ω is the angular velocity, λ is the 
linear density, a function of position as well,  and  are horizontal and vertical unit 
vectors.  T in one point may be assumed to be parallel to the spring in that point, i.e. 
the spring does not stand any tension normal to its length. Thus: 
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Derived from the Hooke’s law, the linear density of the spring as a function of T is: 

T+
⋅=

µ
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And the limitation of the boundary is the total mass of the spring: 

Figure 1: The free body diagram 
for the additional mass in 
equilibrium 



Figure 4: Connection of 
the Motor and the spring 
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L is the length of the spring after expansion, which is supposed to be the main 
unknown parameter to solve. 
Numerical Solution 
To solve the equation, the continuous medium of the spring is converted to a 
discreet medium. The spring is divided to n parts with the same initial length and 
mass. These are represented as n mass points which are connected with 
differentially small springs. Each point is being pulled by two springs. The position of 
equilibrium for each point is to be found. Transient method was used by to solve the 
problem; releasing the spring from an unstable position and iterating towards 
equilibrium. During iteration, every point will move towards the direction of the sum of 
the forces exerted to the point. The repetition of the iterations goes on until the 
movement of the points approaches to zero, i.e. the stable equilibrium condition is 
achieved. 
 

The numerical solution was developed in QBasic programming language. It takes 
about 10’000 iterations for each test case to reach convergence. The convergence 
was assumed to be achieved when the displacement of each of the points during 
iteration would be less than 1/100000 of the spring length. To make sure about the 
independency of the results to the mesh size and the discretization number, this 
number was changed in a test case. The result (Figure 3) shows that the program’s 
result approaches to a constant value when n increases. n = 20 was used in the rest 
of the test cases. 
 
 
Physical Experiments 
The relation between the spring length and angular velocity 
was investigated in physical experiments in several cases, 
to be compared with the numerical and analytical results. 
 
The spring was rotated using a DC 12V motor, covering the 
spin range of 100 to 400 RPM. The spin was variable by 
changing the input voltage to the motor. The connection 

Figure 2: Discretization Assumption: to 
each point four forces are exerted.  
 

Figure 3: Mesh Independency Check.  
n: Number of mesh points 



between the motor and the spring was designed so that the end of the spring would 
be precisely in the axis of rotation; by putting the spring end inside a hole in the 
middle of the axis instead of sticking it to the side. Otherwise, standing wave motions 
could have been observed, especially in cases with high angular velocities. The 
standing waves would make the spring a fully curved shape, with different parts of 
the spring in different sides of the axis. 
 
The angular velocity of the motor was 
measured by means of a tachometer. To 
measure the length of the spring, long 
exposure time photos were captured 
from the rotation, so that the entire 
motion of the spring in one round would 
be visible. The length of the spring 
would be measured by scaling the 
picture, measuring the distance between 
the two ends of the spring. 
 
The modulus of the spring was 
measured by suspending masses with a 
spring of a known length, finding the 
spring constant and modulus. The mass 
of the spring was directly measured, 
used to find the linear density. These 
parameters were used as numerical 
input to the program and to the analytic 
solution to be compared with the 
experiments. 
 
Discussion 
The numerical theory showed 
perfect match with the physical 
experiments in several test cases. 
The length of the spring was 
measured while changing the 
angular velocity in one test case 
(Figure 6), in different initial lengths 
(Figure 7) and in different additional 
masses (figure 9). 
 
It was not possible to make an 
experiment with the exact same 
angular velocity more than once; 
because the Motor would slightly 
change the angular velocity over 
time. Thus, exact error 
measurements were not quite 
possible. However, as we see in Figure 6, in the case where there are many 
measurements in a small region of angular velocity, the differences between the 
experimental data are small compared to the discrepancy to the numerical results. 

Figure 6: Comparison of the numerical results and 
physical experiments 

Figure 5: Long Exposure Time Photos Used 
to Measure Spring Length. Lower pictures 
have higher angular velocity. 
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This fact suggests that the discrepancy between the experimental and the numerical 
results is not because of direct errors in the measurements. But it may be caused by 
the uncertain values given as the input of the numerical solution, e.g. initial spring 
length, which has a precision of about 1mm, and the results are very sensitive to it. 

 
Figure 7: Comparison of the numerical results and experiments in different initial lengths of 
the spring. Units are in Centimeters. 
 

 
Figure 8: The results of the numerical theory and experiments regarding the spring shape. 
Axis units are in meters. 
 



 
Figure 9: Comparing Analytical and numerical theories with physical experiments in different 
additional masses 
The shape of the spring was also calculated numerically and compared with the 
experiments. Figure 8 shows this comparison. The Background image is an 
experiment, and the black points connected with white lines are the predicted 
positions of the points on the spring outputted from the numerical solution. The 
shape of the spring is not fully linear; it has a slight curve upwards. The results all 
show an agreement between the numerical theory and the experiments. 
 
Investigating different additional masses, the analytical theory was also compared 
with the experiments and the numerical method. As we see in (Figure 9), the 
analytical solution does not provide the accuracy of the numerical solution especially 
in small additional masses compared to the spring mass. However it is clear that the 
errors decrease as the additional mass increases. 
 
As a result, the method of the numerical approach used was fully proved 
experimentally in the experiment range; and the analytic solution was shown to have 
an increasing accuracy with the increasing of the additional mass. 
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