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ࣔ૛࢝
૛࢚ࣔ ൌ ࡱ

࣋
ࣔ૛࢝
૛࢞ࣔ ൌ ࡸࢉ

૛ ࣔ૛࢝
૛࢞ࣔ        ,                               (1) 

where w(x,t) is an axial displacement of a small volume element, x is coordinate 
along the rod, E is Young’s modulus, ρ is the rod density. From this equation one 
concludes, that such waves propagate along the rod with the velocity 

ࡸ࡯ ൌ ඥࡱ ⁄࣋       .                        (2) 
(Here the thin rod approximation was used. In a thick rod the longitudinal wave 
speed decreases slightly at the high frequencies due to the effects of the lateral 
inertia[1,2]). Harmonic standing wave solution of the wave equation (1) for the 
boundary condition when the ends of the rod are free has the following form[2]: 

࢝ ൌ ࢔࣊ሺ࢙࢕࡯ ࡭
࢒

ሻ࢞  ൉ ࡸࢉ࢔࣊ሺ ࢙࢕࡯
࢒

࢚ െ  ሻ                   (3)࣐
with the frequency modes 

࢔ࣇ ൌ ࣓
૛࣊

ൌ ࢔ ࡸࢉ
૛࢒

     ; ࢔ ൌ ૚, ૛, ૜, …                 (4) 

and corresponding wave lengths 

࢔ࣅ ൌ ࡸࢉ
࢔ࣇ

ൌ  ૛࢒
࢔

  ; ࢔ ൌ ૚, ૛, ૜, …                     (5) 
For clear understanding we can represent these 

modes in the following way (Fig. 3). The Abscissa 
axis is along the rod, while on the Ordinate axis we 
can show the vibration amplitude. In the places of 
nodes there is no vibration, while in the places of 
antinodes the vibration amplitude is the largest [4,5]. 

Here from, we can conclude, that in order to get 
some particular frequency modes, one must hold the 
rod in the node places of these modes. For example 
let us consider first three harmonics. 

The First Harmonic: 
From (4) and (5) we can see that wave length 

૚ࣅ ൌ ૛࢒ ;  frequency ࣇ૚ ൌ ඥࡱ ⁄࣋
૛࢒

 ; The nod position can 
be calculated assuming that the left end of the rod is 
anti-node and nearest nod to it is at λ/4 distance, i.e. for                                Figure 3[6]. 
the first harmonic nod is at x=l/2.                                                       Longitudinal wave modes. 

The Second Harmonic:     

Similarly wave length ࣅ૛ ൌ ૛ࣇ frequency  ; ࢒ ൌ ඥࡱ ⁄࣋
࢒

ൌ ૛ࣇ૚ ; nod position at x1=l/4; 
x2=3l/4. 

 The Third Harmonic:     

Wave length ࣅ૜ ൌ ૛࢒/૜ ;  frequency ࣇ૛ ൌ ૜ඥࡱ ⁄࣋
૛࢒

ൌ ૜ࣇ૚ ; nod position at x1=l/6; x2=l/2, 
x3=5l/6. 
Using similar calculations we can find the parameters of higher modes. Note, that all 
these vibration modes (n = 0, 1, 2, 3, 4, 5,…) have the same longitudinal speed of 
sound propagation in the rod cL= ඥࡱ ⁄࣋  = νi λi .  
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center axis of the process), that describes the oscillations of the rod segments. For 
example, for the solid cylinder of radius a: 

૛ࡷ ൌ ૚
૛ࢇ࣊ ׬ ׬ ࢇ૛࢘

૙
૛࣊

૙ ൉ ૚
૛

࢘ࢊ࢘ ൉ ࣂࢊ ൌ ૚
૛ࢇ࣊ · ૛࣊

ૡ
૝ࢇ ൌ ૛ࢇ

૝
. 

In (6) the shear deformations and rotary inertia are neglected. This is fourth order 
differential equation. Thus the velocity of transverse waves is dependent on the 
frequency. So the dispersion takes place.  

Solution of equation (6) has the following form[2,3]: 

,࢞ሺ࢟ ሻ࢚ ൌ ࢚ሺ࣓ܛܗ܋ ൅ ሻ࣐ ·  ሾ࡭ ሻ࢞࢑ሺܐܛܗ܋ ൅ ࡮ ሻ࢞࢑ሺܐܖܑܛ ൅ ࡯ ሻ࢞࢑ሺܛܗ܋ ൅ ࡰ  ሻሿ    (7)࢞࢑ሺܖܑܛ

where k=ω/v is the wave (propagation) number. As we mentioned above, wave 
velocity is dependent on frequency: 

࢜ ൌ ඥ૛(8)                                                   . ࡸࢉࡷࣇ࣊ 
This Eyler-Bernoulli beam theory gives the solution of bending waves in a thin beam 
or rod at low frequency. For the thick bars and for a high frequencies it does not 
work.  

Now let us consider the transverse vibration modes in thin bar. They depend on 
the “end conditions”. For our task we consider “both free ends” condition - no torque 
and no shearing force. They give the following restrictions on standing wave 
frequencies[2,3]:  

࢔ࣇ ൌ ࢔࣓
૛࣊

ൌ ࡷ࣊
ૡ࢒૛ ටࡱ

࣋
 · ሾ૜. ૙૚૚ ૛; ૞૛ ; ૠ૛ ; … ; ሺ૛࢔ ൅ ૚ሻ૛ … ሿ         (9) 

and wave lengths: 
࢔ࣅ ൌ  ૝࢒

ሾ૜.૙૚૚ ;૞ ;ૠ ;…;ሺ૛࢔ା૚ሻ… ሿ
        ,                            (10) 

where for n=1 we use 3.011 instead of 3. 
The frequencies and nodal points (for which x satisfies equation (7)=0 for all the 

time t) for the first modes are given in the table 1[2,3]: 

The graphs of bending rod are given on the Figure 7. On this 
figure the numbers are relative frequencies; to obtain actual 

frequencies one must multiply them by ࡷ࣊
૛࢒ ටࡱ

࣋
. 

Here we must note that for thin rods the first several modes of  
the bending waves have frequencies sufficiently lower than 
those for the longitudinal waves due to extra coefficient 

ࡷ
࢒
 

(compare (9) with (4)). So they are below the hearing range and 
we can hear only the higher modes of binding waves. However 
higher modes are vanishing rapidly (we shall discuss it below).                                                        
                                             
                                                              Figure 7. Bending modes[2,3]. 
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