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Problem: A metal rod is held between two fingers and hit. Investigate how the
sound produced depends on the position of holding and hitting the rod?

Abstract

When someone hits the metal rod - compression, bending and torsion waves are excited. We can
hear the sound created by these waves. We investigated the types of waves depending on how one
hits the rod and the modes of the waves depending on the place one holds the rod. Also damping of
these waves was investigated.

We found that the frequency of a standing wave depends on where we hold the rod - if one holds the
rod in the place where are nods of several modes, all these modes occur. Touching the rod at the
ends will stop the sound. The frequencies of bending waves are lower than of compression waves.
Damping of waves depends on the frequency.

1. Wave types in rod

It is clear, that the sound appearing when someone hits the metal rod is created
by the waves which originate in the rod due to hit. So let us list down different types
of waves which can be originated in the rod. They are of three types.

A. Quasi-longitudinal Compression waves (Fig. 1a).
They are Quasi longitudinal due to transverse strains —
as rod stretches, it grows thinner.

B. Bending waves (Fig. 1b). These waves involve
both compression and share strains. Their velocity @
depends on frequency so they are dispersive.

C. Transverse Torsion waves (Fig. 1c). They
represent a lateral displacement y which varies with x O) ) ) 73‘) 1 UD )(%
and gives rise to a shear strain. In thin rod torsion

shear waves travel at a speed which is always little less Figure 1.(a,b,c)™

than longitudinal wave speed. Wave types in thin rod.
The type of waves arising in a thin rod depends on

the Way one h|tS the Iatter. _){An—type Compression waves (in idealcase)
When one hits a rod along its axis, type (A) waves AlSoIf siiding fingers along the rod

do arise (Fig 2a). Of course if the hit is ideally central.
Such waves arise also if one slides the fingers along the l

rod. When one hits the rod normally to its axis, two types J' §§§ZE§EZ 2ce>nmd|::pgsvg;\:16;aves
of waves — (A) and (B) do arise. When one hits the rod

tangentialy to its diameter (Fig 2c), all three types of (©)— type Torslon waves
waves are generated because it will strain, bend and (B) - type Bending waves

(A)-type Compression waves

compress. ‘l'
Now let us discuss all these cases. Let us start with
longitudinal waves.

2. Longitudinal waves. Figure 2 (a,b,c).
Compression waves in a thin bar or rod are described Waves depending to hit.
by a one-dimensional wave equation of the second order>*!:
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where w(x,t) is an axial displacement of a small volume element, x is coordinate

along the rod, E is Young’'s modulus, p is the rod density. From this equation one
concludes, that such waves propagate along the rod with the velocity

CL=+E/p . 2)

(Here the thin rod approximation was used. In a thick rod the longitudinal wave
speed decreases slightly at the high frequencies due to the effects of the lateral
inertia™?). Harmonic standing wave solution of the wave equation (1? for the
boundary condition when the ends of the rod are free has the following form'?:
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w = A Cos(—x) - Cos ( lLt—q)) (3)
with the frequency modes
w Cy,
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and corresponding wave lengths
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For clear understanding we can represent these Actual Longitudinal Wave Motion in Bar

modes in the following way (Fig. 3). The Abscissa | T ¢ = Pt
axis is along the rod, while on the Ordinate axis we , i
can show the vibration amplitude. In the places of | |
nodes there is no vibration, while in the places of Mg
antinodes the vibration amplitude is the largest . —
Here from, we can conclude, that in order to get S T
K ransverse Representation of Wave Motion
some particular frequency modes, one must hold the

rod in the node places of these modes. For example |~ —————

i _ Intermediate-
No Motion Amplitude

at the Nodes Motion at other
V¥~ locations

let us consider first three harmonics. . 14 .

The First Harmonic: B S S

From (4) and (5) we can see that wave length wc
VE/p s

Ay =21 ; frequency vy = TR The nod position can T T T

be calculated assuming that the left end of the rod is

anti-node and nearest nod to it is at /4 distance, i.e. for Figure 3.

the first harmonic nod is at x=1/2. Longitudinal wave modes.
The Second Harmonic:

Similarly wave length 4, =1 ; frequency v, = JEle _ 2v4 ; nod position at x;=l/4;

1
x,=3l/4.
The Third Harmonic:

Wave length 4; = 21/3 ; frequency v, =

x3=5l/6.
Using similar calculations we can find the parameters of higher modes. Note, that all
these vibration modes (n =0, 1, 2, 3, 4, 5,...) have the same longitudinal speed of

sound propagation in the rod ¢;=/E/p = v;4; .

3,E/p

T 3v4 ; nod position at x;=l/6; x,=l/2,



3. Experiments with Longitudinal waves.

Now let us try to exite the quasi-longitudinal waves in
the rod and investigate the sound we’ll hear.

To make rod sound clearer and louder, we tried to: hit
the rod as fast as possible; hit it not very hard, because in
other case harmonic form of waves will be violated; hit the
rod with thing, that doesn't produce high sound itself (e.g.
Ebonite Rod), so it will not mix with the sound of rod; hit it
axially or normally, and not intermediate.

Also we excited the longitudinal waves by sliding the
hand along the rod axis. We used the Rosin powder to
make fingers more sticky. Figure 4,

In our experiments we observed that the pitch of the Making Longitudinal waves
sound can be varied by changing the places when we held
the Rod or by changing the length of the rod itself.

Let us describe the results of our experiments.

At first we took Aluminum rod (pay =2,7-10° kg/m’ ; Eq =70x10° N/m’ ; Cpoay =
5082.4 m/s ) of length I=1,2 m. According our theoretical calculations, for this rod:

Parameters of the first harmonic are: 4;=2.4 m; v;=2117 Hz;, nod is at: x=0.6 m.

The second harmonic has the following parameters: 4,=1.2 m; v,=4234 Hz; nodes
are at: x;=0.3 m, x,=0.9 m.

The third harmonic has the following parameters: 1;=0.8 m; v;=6351 Hz; nodes are
at: x;=0.2m,x,=0.6 m,x;=1.0 m.
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Figure 5. Spectrum of the Al rod (holding in the center).

We recorded the sound of the rod using computer microphone with wide
sensibility range and made its analysis by means of “Sound Forge” program. On
Figure 5 we represent the spectrum analysis of the frequencies of sound generated
by this Al rod when we hold it in the center and hit axially or slide the fingers along it.
As we see, in such case several modes having nodes in the center are excited. We
see clearly modes “1” and “3”. Their frequencies match with theoretical calculations
quite well. The second mode is damped because it has no node in the center. Higher
modes have lower amplitudes (for given energy the amplitude of oscillation is
inversely proportional to its frequency) so they are more difficult to detect. Thus we
can see that if one holds the rod in the place where are the nods of several modes,
all these modes will occur. Touching the rod at the ends will stop the sound.

We made experiments with rods of different lengths and different materials. For
example here we present also the sound generated by the Brass rod (pg, = 8,5-10°
kg/m’ ; Eg. = 95x10° N/m® ; Cru,) = 3480 m/s ) of length I = 0.4 m. According our
theoretical calculations, for this rod:



Parameters of the first harmonic are: 4;=0.8 m; v;/=4350 Hz;, nod is at: x= 0.2 m.

The second harmonic has the following parameters: 1,=0.4 m; v,=8700 Hz; nodes
are at: x;=0.1 m, x,=0.3 m.

The third harmonic has the following parameters: 4;=0.27 m; v;=13 050 Hz; nodes
are at: x;= 0.07 m, x;= 0.2 m, x;= 0.33 m.
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Figure 6 (a,b). Spectrum of the Brass rod (a — holding in the center, b holding at -I/4).

On Figure 6 we represent the spectrum analysis of the frequencies of sound
generated by this Brass rod when we hold it in the center (a) and at //4 (b). We can
see that in the first case first mode is excited and in the second case — the second
mode.

Note, that on Figures 5 and 6 we see also pikes at lower frequencies. They
correspond to other waves — bending waves, which will be discussed below. Of
course in our experiments we could not hit the rod ideally, to excite only longitudinal
(A)-type waves.

4. Bending waves.

Now, let's consider the bending waves arising in the rod when we hit it normally to
its axis. Bending waves in the thin rod (i.e. using approximation when rod diameter is
much less than the wavelength) are expressed by the Euler-Bernoulli beam theory
equation of motion[®>*:
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where K is so-called “Gyration Radius” of the rod cross section:
1
K% == [ z%ds,
s

S — is the cross-section area of the rod, z — is the radial distance from the rod central
axis, y - is the displacement in the direction perpendicular to x (average symmetry



center axis of the process), that describes the oscillations of the rod segments. For

example, for the solid cylinder of radius a:

1 2 4  a?

2_ 1 pmpea p 1 .do = -
K*=— [ [yt jrdr-do=— 2 -
In (6) the shear deformations and rotary inertia are neglected. This is fourth order
differential equation. Thus the velocity of transverse waves is dependent on the
frequency. So the dispersion takes place.
Solution of equation (6) has the following form

y(x,t) = cos(wt + @) - [Acosh(kx) + Bsinh(kx) + C cos(kx) + D sin(kx)] (7)

[2,3].

where k=w/v is the wave (propagation) number. As we mentioned above, wave
velocity is dependent on frequency:

v =,/2nvKc; . (8)
This Eyler-Bernoulli beam theory gives the solution of bending waves in a thin beam
or rod at low frequency. For the thick bars and for a high frequencies it does not
work.

Now let us consider the transverse vibration modes in thin bar. They depend on
the “end conditions”. For our task we consider “both free ends” condition - no torque
and no shearing force. They give the following restrictions on standing wave
frequencies®?:

v, = ‘;’—; =’;—l’§\/§ . [3.0112;52%;72; . ;(2n+1)%...] (9)
and wave lengths:
. 41
n T [3.011;5;7;..,(2n+1)...] ’

(10)

where for n=I we use 3.011 instead of 3.
The frequencies and nodal points (for which x satisfies equation (7)=0 for all the
time #) for the first modes are given in the table 13

Table I. Characteristics of transverse vibrations in a bar with free ends.

Frequency Wavelength Nodal positions
(Hz) (m) (m from end of 1-m bar)
fi=13.5607 (K/L*VE/p 1.330L 0.224,0.776
2.756 f, 0.800L 0.132, 0.500, 0.868
5.404 f, 0.572L 0.094, 0.356, 0.644, 0.906
8.933 1, 0.445L 0.073, 0.277, 0.500, 0.723, 0.927

The graphs of bending rod are given on the Figure 7. On this
figure the numbers are relative frequencies; to obtain actual
frequencies one must multiply them by ’:—ZK E.

Here we must note that for thin rods the first several modes of
the bending waves have frequencies sufficiently lower than

- . K
those for the longitudinal waves due to extra coefficient 7

(compare (9) with (4)). So they are below the hearing range and
we can hear only the higher modes of binding waves. However
higher modes are vanishing rapidly (we shall discuss it below).

[2.3]

Figure 7. Bending modes



Also, if one will consider the different “end conditions”, the case with condition (a)
“both free ends” begins with modes of higher frequency than case (b) “one clamped
end - one free end” and (c) “two supported ends”®?, thus the second mode in case
(@) is in *“hearing frequency range”, but in cases (b) and (c) — is not.
This is why we considered only “both free ends” condition.

Here we must also mention, that the effect depends on the point, where the rod is
hit. The effect is much stronger, if one hits the rod transversally at the anti-nodes of
the mode allowed by holding position. In such case relevant mode will be excited
highly.

Let us calculate the frequencies for the rods we used in experiment.

5. Experiments with Bending waves.

Now Let us describe the results of our experiments when we hit the rod normally
to its axis with the Ebonite stick.

For our experiments we took steel rod (ps; =7,810° kg/m’; Es; =200x10° N/m’; Cysy
= 5150 m/s) of length I= 0.6 m; radius a= 0.007 m; Gyration radius K=0.0035 m.

According our theoretical calculations, for this rod:

The first harmonic has the following parameters: i5;=0,8 m; v,=190 Hz;, nodes are
at: x;=0.13 m, x,= 0,47 m.

The second harmonic has the following parameters: 25,=0,48 m; v,=525 Hz; nodes
are at: x;=0.08 m, x,=0.3 m, x;=0.52 m

The third harmonic has the following parameters: ig;= 0.34 m; vs=1029 Hz, nodes
are at: x;=0.056 m, x,=0.21 m, x3=0.39 m, x;=0.544 m.

As it was expected, if one holds the rod in the point where nods of several modes
are placed all these modes will occur. Touching the rod at the ends damped the
sound (because, as we discussed above, in such a case with the one clamped end
only the high modes are in the “hearing range” but the high modes are damped very

rapidly).
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Figure 8. Spectrum of Steel rod (holding in the center).

On Figure 8 we represent the spectrum analysis of the frequencies of sound
generated by this Steel rod when we hold it in the center. We can see that in this
case the second harmonic mode is excited.

Here it is worth to recall, that the low frequency pikes we saw on Figures 5 and 6,
correspond to these bending waves. Of course in those experiments we occasionally
excited such waves too.

As to (C)-type Torsion Waves, we did not focus on them due to technical
difficulties, in particular the exciting of such type of waves without exciting other
types of waves of large amplitude.



Beats.

In our Experiments we noticed that sound
became sometimes stronger, sometimes weaker
(see picture 9). This was because of Beats - an
interference between two sounds of slightly
different frequencies.

Figure 9. Beats.

6. Sound damping.

Damping of rod vibrations generally speaking
can be caused by the following reasons: 1. Air
damping; 2. Internal Damping; 3. Transfer of energy
to other systems (e.g. fingers holding the rod).

Sound damping is the exponential function. For
vibration amplitude one can write®*:

t
A = Aoe_?
where t is the so called “decay time” — the time at which amplitude damps in e-times.
This decay time for the mentioned damping reasons has the following formt™2:

For the Air dumping: t, ~pr/+/v where ris rod radius, p its density and v —

vibration frequency.

For the Internal damping: Ty, ~$

e I

For the case of energy transfer to other systems: 7, ~ oz

As we can see, in all cases dumping is higher for large frequencies. So, we can
conclude that higher modes damp sooner, also, longitudinal waves damp faster than
bending waves because the latter have the lower frequency modes. This we saw in
out experiments — the longest lasting were the low modes of bending waves.

7. Conclusion.

We investigated compression, bending and torsion waves which are excited if one

hits the thin rod.

We find that:

» There are different types of waves in the rod - compression, bending and
torsion waves;

* The type of wave (are they compression, bending and torsion waves, or
several type of waves at the same time) depends on how do we hit the rod;

» The frequency of standing wave depends on where we hold the rod - if one
holds the rod in the place where are the nods of several modes, all these
modes will occur. Touching the rod at the ends will stop the sound;

» The frequencies of bending waves are lower than of compression waves;

» Damping of the waves depends on frequency.
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